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Quantum mechanical ground states, nonlinear Schrodinger 
equations and linked cluster expansions? 

Leo P Kadanoff and Mahito Kohmotof 
The James Franck Institute and the Department of Physics, The Universiry of Chicago, 
Chicago, IL 60637, USA 

Received 25 September 1980 

Abstract. The ground state wavefunction of an infinitely large, spatially homogeneous 
system is evaluated in terms of wavefunctions for linked clusters of points within the system. 
The linked cluster wavefunction is shown to obey a nonlinear form of the Schrodinger 
equation, with the unlinked pieces providing the nonlinearity. A variational principle for the 
ground state energy is derived. 

1. Introduction 

In this paper we study lattice problems with a Hamiltonian which consists of kinetic 
terms and interaction terms. The kinetic terms act on each lattice site individually and 
the interaction terms, on the other hand, give interactions between different lattice 
sites. The unperturbative ground state of the total system, 1 ), is simply the product of 
unperturbative ground states at each lattice point which gives the lowest kinetic energy. 
The true ground state is expressed in terms of excitations superposed upon the 
unperturbed ground state, I ). These excitations include unlinked terms, i.e. several 
individual excitations separated by large distances in which the wavefunction for the 
composite state is a product of wavefunctions for the individual regions of the lattice. In 
order to achieve a smooth transition to the infinite lattice, it is helpful to eliminate these 
unlinked terms from the wavefunction. When this is done, one can write the resulting 
problem in terms of a set of wavefunctions $,, in which the graph g describes a linked 
excitation, i.e. a set of relatively closely neighbouring lattice sites with a quantum 
number associated with each lattice site. (Since we focus upon translationally invariant 
systems, two graphs gl and g2 which differ by a lattice translation are considered to be 
the same graph.) Then $g obeys a simple nonlinear type of Schrodinger equation, 
namely an equation of the form 

Here t ( g )  is the kinetic energy associated with a graph g and U,[$] is a function with 
terms of order (1, to the powers 0 through 4. One important property of this expression 
for the wavefunction is that all coefficients in it are independent of the size of the system. 

t Work supported by NSF Grant DMR77-12637. 
$ Present address: Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 
USA. 
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In a similar fashion, the ground state energy per site is given by 

E O  = Eo,” = ~d41,  (1.2) 

where uo has in it linear and quadratic terms in the $g’s. 

functional 
The final major result of this paper is a variational principle based upon the 

where D[$]  is a specified, potential independent, functional of the tJg’s. This functionai 
reaches an extrema1 value for the correct choice of $g‘s, with that extremum being eo. 

These results are obtained formally and quite generally. However, they can be 
easily sharpened to give useful results for practical problems. For example, they can be 
used to calculate series expansions of ground state energy for lattice field theories in the 
time continuum Hamiltonian formulation, as in Hamer et a1 (1979). In § 5 ,  the 
two-dimensional king model is treated in this formulation. The ground state energy is 
calculated in a high-temperature series expansion and the procedure is explained in 
detail. 

The results of this paper may also prove to be of interest in more analytical studies of 
many-body ground state problems. 

2. Formulation 

2.1. Statement of problem 

Given a lattice with translational invariance in which the individual sites are labelled by 
the index, r, at each site there is a ‘momentum’ variable Pr and a coordinate variable Qr 
which do not commute. All variables at different sites commute with one another. A 
rather general Hamiltonian for this type of problem is a sum of a kinetic energy 

and a two-body potential energy. The potential energy is expressed as a sum of terms in 
which sites separated by a distance R interact: 

with each interaction term being translationally invariant, 

VR =c oR(Qr, Q r + R ) .  (2.3) 
r 

We assume that each momentum variable has eigenvalues 

p : = o ,  PI, P z , .  . . , P a , .  . . (2.4) 

and that the ground state of T is I ), a state with all momenta equal to zero. If we assume 
periodic boundary conditions and short-range forces, the ground state of the system will 
have an energy which is linear in the number of sites in the system, at least in the case 
studied here in which the true ground state may be obtained perturbatively from I ). 
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Thus we wish to solve 

( T +  V)19) = N E " / + )  (2.5) 

for the ground state 14) and the energy per site 
Before we set out to calculate, we make some additional assumptions which are not 

really restrictive but rather are of a notational character. We choose T to vanish in the 
unperturbed ground state, i.e. 

t (0)  = 0 ,  ( 2 . 6 ~ )  

and also V to have zero diagonal matrix element in this state: 

( /VI  ) = 0. (2.6b) 

One can then construct a complete and orthogonal set of basis states by using the 
operators a f ( r )  which, when they act upon 1 ), convert P: from zero to the value P,. A 
graph of order n is specified by a set of n non-zero momenta P,,, P,,, . . . , Pa, and n 
distinct lattice sites r l ,  r2, . . . , rn at which the momenta lie. The graph g is specified by 
these data, except that translations rj + r, + r (for all j = 1 , 2 ,  . . . , n )  produce exactly the 
same graph. We define a creation operator for the graph via 

( 2 . 7 ~ )  A i ( r )  = a:l ( r l  + r)a:, (r2 + r )  . . . a :n (r,  + r )  
so that the creation operator is 

A i  = 1 A i ( r )  
r 

(2 .7b)  

and the state associated with it is 

lg) = A i l  ). ( 2 . 7 ~ )  

To calculate the properties of a translationally invariant state, like the ground state, 
note that the 1g)'s form a complete set with the normalisation 

(glW = N8g.h. (2 .8)  

One can expand the ground state wavefunction in terms of these states as 

R 

and then find an expression for the eigenvalue equation 

(2.10) 

with up, being the N-independent quantity 

and t ( g )  being the total kinetic energy of the excitation g, i.e. in terms of the definition 
(2.7) 

Equation (2.10) is supplemented by an equation for the ground state energy per site 

(2.13) 
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2.2. Disconnected and connected 

Equation (2.10) forms a perfectly linear Schrodinger equation. However, it has two 
related defects. First, N appears in the equation and we know that the evsntuai answer, 
c0, is independent of N. Second, even in low orders of perturbation theory in V 
disconnected configurations appear, namely ones with momenta on very widely 
separated sites so that the distance between them is irrelevant. To avoid these 
difficulties, we reach for another basis, one which is not orthogonal. We still use, the 
states g, as defined by equation (2.27), but now we restrict this set to include only those 
states in which the non-zero momenta are separated by distances much smaller than the 
dimension of the system. In fact, in mth-order perturbation theory the largest separa- 
tion in these states is the force range (the maximum value of R in equation (2.3)) times 
m. 

To take into account the disconnected clusters, we introduce new types of basis 
states which are not orthogonal. For example, we construct a state with two dis- 
connected clusters of types gl and g2 as 

kl, g2) = C‘ A;l(r)A;2(r’)l ). 
rr ’  

Here the cluster creation operators, A i  (Y), are the quantities defined in equation (2.7). 
‘The prime on the summation indicates that as Y and r‘ go through their possible values 
(i.e. the set of all lattice points), all terms in which the two clusters overlap are omitted. 
Thus it is never possible for an a: from one cluster to find itself at the same point in 
space as an a:, from the other cluster. This is the only restriction on the sum. The 
clusters may get to within one lattice spacing of each other. One may find itself totally 
surrounded by the other. These configurations are possible in /gl, g2). But one cluster 
may not be on top of the other. Similarly, disconnected states with larger numbers of 
clusters are defined so that 

lgl, gz, . . , g,,,) = E’ Ai , (rd  . . . Aim(rm)I ) (2.14) 
r l  ... ., r,,, 

with the restriction on the sums that no two clusters overlap, 

the problem in the form 

i$)=i)+C$,Is)+ C i ~$~ , , , I g l , . d+ . . .+  C ~ ~ ~ ~ ~ ~ . . . ~ , l g l , g z , . . . , g , ) + . . . .  

(2.15) 

In  this basis, the state lgl, g ~ ,  . . . , g m )  includes every configuration of gi’s which do not 
overlap among themselves. Each configuration gives the same contribution, $LRl,., . ,g,, , ,  to 
the true ground state 14). 

This means the coefficient $ D a l , , , . , n m  is independent of the separations between graphs 
and consequently can be written as a product of the weights for the linked states 
g1,. . . , g m :  

Now, we use this new set of basis slates to rewrite the ground state wavefunction for 

1 1 
R gig2 R l . . . g m  

The contribution from the parts which depend on the relative distance between the 
graphs has been already taken into account as a linked contribution. 

For any translationally invariant system, the states 1 )  ai;d 1s) form a set. Hence 
equation (2.15) with equation (2.16) is not an assertion but merely a redefinition of 
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basis. This redefinition is useful precisely because 9, will, in a given order of pertur- 
bation theory, be given an N-independent value if the system is larger than the order of 
perturbation theory times the force range. Hence for large enough N the rewriting 
(2.15) permits the definition of an N-independent Schrodinger equation. 

The reason that equation (2.15) will be successful lies precisely in the fact that it 
correctly takes into account the disconnected effects of the potential acting upon 
different regions of the lattice. Then IClg, as distinct from C$,, will be non-zero only for the 
case in which all arguments in the cluster arc close to one another. 

The relationship between 4g and 4, is easily stated. Let m ( g ;  g lg2 )  be the number 
of ways one can pariition the lattice sites in the cluster g to form two groups, one of 
which makes up the cluster gl  and the other the cluster g2.  Then 

(2.17) 

Thus CL, forms the fully linked part of 4, and the second term represents the 
disconnected contribution which is independent of the separation between graphs gl  
and g2. 

To derive a nonlinear Schrodinger equation, we take the wavefunction (2.15) and 
apply ( T  + V -Neo). We then prove that the resulting expression takes the form 

(2.18) 

Here WO and W, are functionals of &. We then simply adjust to set WO to zero and 
9, to set W, to zero. In the process one notices that 9, is completely connected in low 
orders of perturbation theory, i.e. the only non-vanishing 9,’s are those which contain 
closely neighbouring points. 

2.3. Expression for ground state energy 

To obtain an expression for the ground state energy, simply multiply equation (2.18) on 
the left by ( 1 .  We then have 

(2.19) 

When V acts upon 19) it can give the ground state in two possible ways. Either V acts 
entirely within one excitation and reduces the momenta in that excitation to zero via 

(01 V l g )  = Nt.0, (2.20a) 

(of course this can only happen if g is an excitation of order two, since V can change at 
most two momenta to zero at the same time), or alternatively, V can act upon a 
disconnected state /gl ,  g 2 )  in which both pieces contain just one non-zero momentum. 
A part of this state has these pieces within a force range of each other. When this 
happens one can get a contribution to the ground state energy arising from the matrix 
element 

(2.20b) 

Thus, by putting together equations (2.15), (2.18), (2.19) and (2.20), one finds an 
expression for the ground stzte energy 

WO = -eo + ( I VI*)/N* 

co;gl,z = (01 Vlg , ,  g2) lN.  

(2.21) 
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For the purposes of later analysis, it is important to decompose the effect of V into the 
components caused by the different separations R in equations (2.2) and (2.3). Here R 
represents the relative coordinate of the two sites at which the potential acts. We can 
then write equations ( 2 . 2 0 ~ )  and (2.20b) in terms of VR as 

vOg(R) = (1/N)(OI V R l g ) ,  ( 2 . 2 2 ~ )  

V O ; g , , g 2 ( R )  = (l/N)(oI vRIg1,  g2), (2.22b) 

and then rewrite equation (2.21) in a form which will later prove useful: 

(2.23) 

(2.24) 

3. Derivation of nonlinear Schrodinger equation 

We now proceed to our major task, the derivation of a nonlinear Schrodinger equation, 
i.e. the evaluation of Wg. To achieve this we require some notation for disconnected 
states containing many connected components. An mth-order disconnected state 
/ g l ,  g 2 , .  . , , g,) is written simply as IG), where G is an abbreviation for the list 
g1, g2, 9 * 9 gm. If we eliminate the p element from the list the result is written G/g, ,  
while if we add a new element, g,  to the list the result is G, g. 

3.1. Effect of kinetic energy and V 

The kinetic energy term produces an essentially trivial effect upon the disconnected 
states. Since they are disconnected, the kinetic energy is simply the sum of the kinetic 
energies of the individual pieces, 

Therefore the effect of multiplying a state of the form (2.15) by the operator T is very 
simple, namely 

Here $g a / a g  picks out the terms in the ground state I$) which contain the graph g. We 
have therefore formed a piece of the functional Wg[cI]mentioned in equations (1.1) and 
(2.18), namely the piece corresponding to the kinetic energy 

w; = $gt(g)* (3.3) 

The potential energy term, V, has a much more complicated structure. Acting to the 

(1) affect the momenta in one cluster, say g,; 
( 2 )  affect the momenta in two different clusters, say g ,  and g,; 
( 3 )  act upon two points in space where there are no clusters at all. 

right upon an mth-order cluster IG), it may: 
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We can further subdivide the cases (1) and (2) in the following way. 
( la )  The cluster g ,  is changed into the new state g ' .  
( lb )  This cluster is destroyed by setting all its momenta to zero. 

For case (2), we have two subcases. 
(2a) After the action of the potential some of the momenta in one or both clusters 

remain different from zero. Then we interpret the results as the single new cluster g ' .  
(2b) All momenta in both clusters become zero. Both clusters are then destroyed. 
This classification exhausts the possible effects of V and permits us to list systema- 

tically the possible terms in V ~ I J ) .  

3.2. Effects of V :  linked diagrams 

The simplest effect of V is number (3). This action of V inserts into the old mth-order 
unlinked state 1G) a new unlinked cluster g according to 

VIG)=C U g o I G ,  g ) .  
g 

Thus an (m + 1)-order cluster is constructed from one of order m. This effect can be 
taken into account by adding to the Wg of equation (2.18) a term 

(3.4) 

In the effect of number ( la) ,  V acts within one cluster, g, and produces a new cluster, 
g' ,  by changing the momenta in g. It is possible for both the Q, in V to lie in the cluster, 
or for one to lie in the cluster and the other to fall upon a neighbouring site with zero 
momentum. Thus the new cluster may have the same size as g,  or have a size which is 
one larger, or one or two smaller than g. In any case, one represents the effect of V 
upon a single cluster by writing 

0 w, = v,o. 

h g 

The first term is effect ( lb ) ,  the second effect (3) and the third represents effect ( la) .  By 
multiplying equation (3.5) on the left by (g ' l ,  the intracluster matrix element vgtkg is 
defined as 

Notice that this matrix element is not Hermitian, 

V g ' , g  # (ug;g,)*, 

since we subtract off the case in which V, acting to the right, adds an entirely new cluster. 
This effect of V is seen on our composite state as a modification of the individual 
clusters one by one: 

= E  1 u g ; ; g f i l ( G / g f i ) ,  g : )+ .  . . . 
& g L  

However, this expression does not yet represent that effect of V completely. A 
correction due to the excluded volume is needed when the action of V makes a graph 
whose size is smaller than that of the original one. The state l ( G / g f i ) ,  g:)  is all the 
translations of the graph g: and the graphs g ,  (v # p )  contained in G which do not 
overlap each other. On the other hand, the original state / G )  is all the translations of the 
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graphs g, and g, (v # p ) .  When the size of g: is smaller than that of g,L, the state IG/g,, 
gL) contains more translations of the graphs than the original state does. In other 
words, some configurations of graphs lG/g,, g:) where the graphs g: and g, (v # p )  are 
very close cannot be produced by the action of V because in the original state the larger 
graph g,& would overlap the graphs g, (v Z p). 

If the required corrections due to the effect mentioned above have been made, the 
action of V may be written as 

VlG), o-L,~,,! l(G/g,), gL)- n ( g ;  gLgy; g,)l(G/g,g,), g)). 
li. 9 ;  v#, 

In the second term in the bracket, the graphs gL and g,, are very close and the relative 
spatial relation is fixed; accordingly, we regard them as the connected graph g. The 
coefficient n (g;  gLg,; g,) is 1 when the graph g, does overlap with the graph g, and is 0 
otherwise. Corresponding terms in W are 

(3.7) 

The term (2a) is rather simple. When V acts upon lgl, gz) and it touches both 
clusters, we can interpret the result as a new single cluster, i.e. 

B 

The corresponding effect upon a general disconnected state is 

As a result W gains a new term which is now quadratic in the $'s, namely 

(3.9) 
R l . f i 2  

The result which we have so far is equivalent to counting linked graphs in a 
perturbation expansion. It is summarised by giving the value of W to be 

where the term we have calculated so far is 

(3.11) 

We next turn to a. calculation of the analogues of the unlinked diagrams in a pertur- 
bation expansion. These arise from the - N E ~ I $ )  terms in equation (2.18) and from the 
effects ( l b )  and (2b) of V in destroying clusters. 

3.3. Unlinked terms 

The next part of our calculation involves seeing how V destroys clusters. The basic 
problem involves counting how many ways V can destroy one or two clusters in the 
general mth-order disconnected state IG). This, in turn, requires a counting which is 
equivalent to the construction of the usual lattice constants in perturbation theory, 
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namely figuring out how many times a given graph g may be inserted into a state 
I(G/g, j )  without overlapping clusters already present. 

Consider the effect ( lb) ,  in particular the destruction of a cluster by the part of the 
potential energy which has its two operators separated by a displacement R.  The 
resulting expression for effect ( l b )  is 

with 

(3.12) 

(3.13) 

Our basic problem is to count how many times A i ,  a creation operator for a 
second-order (two-point) cluster with the points separated by a displacement R, can 
appear in the summation (3.13). We focus upon the case in which the first cluster, gl, is 
destroyed. Our counting problem, which is equivalent to the calculation of lattice 
constants in the usual perturbation theory, is to find out how many times a bond with 
displacement R can be added to the state l(G/gl)) without overlapping any of the 
original clusters g2, g3, . . . , g,n. 

The total count is N, the number of lattice sites, minus the number of overlaps, No. 
The latter can be computed as the sum of the number of times the bond can overlap a 
cluster g, ( p  = 2 , 3 , .  . . , m ) ,  minus a term which accounts for the overcounting of the 
case in which the bond overlaps two pre-existing clusters which happen to be close 
together. Thus we write equation (3.12) as 

V R / G ) = C  cu.,,,(R)(N- V i &  rtgv(R))lG/g,)+C I* A C V  1 uo,,,(R)m!i?(G/g,)+. . . . 
(3.14) 

Here n,,(R) counts the numbei of times a bond of length R may overlap a cluster g,. 
The last term in equation (3.14) describes the effect of the correction required when the 
bond touches both :he cluster g, and the cluster g,. In this term A and I, are required to 
be different from ,u. 

To describe the second term in equation (3.14), consider the case in which clusters g2 
and g3 lie at some specified relative position close together so that they may together be 
viewed as the new cluster g. Let n,,,,,,(R) count the number of times that, for fixed 
positions of g2, g3 and the bond can be placed so that the combined cluster (g2 + g3) is 
g and also the bond touches both g2 and g3. Then the second term of equation (3.14) is 
given by 

(3.15) 

(3.16) 

In the. second sum, A and 77 are required to be different from ,u and Y. The net result for 
evaluating the effects of the potential in destroying clusters can then be written down. 
This part of VI+) is combined with the term (-Ne0)I+) which appears in equation 
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(2.18). We thus wish to calculate contributions ( lb)  and (2b) in 

(3.17) 

The first point of our calculation is to notice that the terms linear in N cancel out of the 
left-hand side of equation (3.17). The linear terms in N in equations (3.14) and (3.16) 
exactly cancel N.sO as defined by equations (2.23) and (2.24). After that cancellation is 
achieved, the remainder of the left-hand side of equation (3.17) is N-independent and 
can be written in the form indicated on the right-hand side of equation (3.17), with 

(3.18) 

where s0(R) is given by equation (2.24). 
This completes our derivation of the nonlinear Schrodinger equation, which is the 

statement W, = 0, with W, being given by equations (3.10), (3.11), (3.18) and (2.23). 
When all this is added up, we have the final result of this section, 

(3.19) 

4. Variational calculation 

Let us assume that we have a rather good solution to the Schrodinger equation, i.e. a set 
of approximate values of the wavefunction 4r Call these approximate values xS.  Given 
this wavefunction, which for example niight be accurate to some order M in a 
perturbation expansion in V, how do we get the best estimate for the energy eigen- 
value? The classical answer to this question is to form 

If the error in I x )  is of order M + 1, U is an estimate of the energy which automatically 
has its error of order 2 M + 2 .  Furthermore, if I x ) =  14), the right wavefunction, 
expression (4.1) is automatically stationary with respect to variations in the wavefunc- 
tion. Finally, the estimate (4.1) automatically forms an upper bound on the correct 
ground state energy. 

Now let us apply equation (4.1) to our form of the wavefunction, namely 

The error is not in the form of the solution (equation (4.2) has the same structure as 
equations (2.15) and (2.16)) but in the numerical value of xg. Form U / N  = our 
approximation to the ground state energy, and rewrite equation (4.1) in the form 

Ea = U / N = ( x / T +  v-N&O,(X)/N(XlX)+&On. (4.3) 
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Choose E :  to be the approximation to the ground state energy given by equation (2.24), 
i.e. 

(4.4) 

Equation (4.4) gives E,, which is likely to be a better approximation to the true ground 
state energy. It is larger than the true answer but by an amount which is proportional to 

From equation (2.18) we can evaluate the right-hand side of equation (4.4) and 

(4.5a) 

where the functional W,[x] is defined by equation (3.19). An adjoint version of the 
same argument gives the adjoint result 

(*g - x d 2 .  

obtain 

&a = E :  +(x i1  w ~ [ x I  ~ / ~ x R I x ) I N ( x I x )  
R 

(4.5b) 

We average these two results and find a final useful form of the variational principle: 

The N-dependence in equation (4.6) is only apparent since 

mx1= (1/N) W Y I X )  (4.7) 
is independent of N for large systems, and 1x) of the form (4.2). Nonetheless this 
apparent N-dependence is bothersome since the evaluation of D [ x ]  is in essence a 
linked cluster expansion in which a whole variety of lattice constants must be calculated. 

5. The Ising model 

In this section, the ground state energy of the one-dimensional Ising model in a 
transverse magnetic field is obtained perturbatively, using the nonlinear Schrodinger 
equation given in 5 3. This model corresponds to the time continuum formulation of the 
two-dimensional Ising model (Kogut and Susskind 1975, Fradkin and Susskind 1978). 
The ground state energy of the one-dimensional Hamiltonian corresponds to the free 
energy of the two-dimensional Ising model. This ground state energy has been 
obtained exactly by Pfeuty (1970). 

The Hamiltonian is 

H = T - A V ,  (5.1) 
where 

(5.2) 

and 
N 

v = al(n)cTl(n + I ) .  
I1 = 1 

(5.3) 
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Here c l ( n )  and c 3 ( n )  are the usual Pauli spin matrices acting on the spin vector at the 
site labelled by the index n. Periodic boundary conditions are imposed, so the spin at 
the (N+1) site is the same as that at the first site. This makes the ground state 
translationally invariant. 

The ground state of T, 1 ), consists of spins at all the sites pointing up. The action of 
V is to flip the spins at two adjacent lattice sites. Only one excitation is allowed at each 
site, namely the spin is down. The nonlinear Schrodinger equation (3.19) may be 
written in this case as 

The graphs consist of the spins pointing up at almost all sites except for some spins 
pointing down. For example, we have a graph like g = (1 101 l ) ,  where 1 means the spin 
at the site is down and 0 means the spin is up. In this example, four spins are down and 
the spin in the middle of the graph is up. 

Lzt us explain each term in equation (5.4) in detail. On the left-hand side t(g) is the 
kinetic energy of the graph g. Each down spin contributes to the kinetic energy by the 
amount two, so 

t(g) = 2 x (number of down spins in 8). (5.5) 

The first term on the right-hand side is the matrix element of the potential between the 
ground state of T and the state ig). Therefore this term contributes only to the state 
g = (11). In the second term, u , , ~  is non-zero only when a state g is made from a state g' 
by the action of V. An example is u( lo l j , ( l l j  = -A. Special care must be taken in some 
cases. For example, uillllj,ill) = 0 even though the action of V can make the state 
(2111) from the state (11). This is due to the subtraction term on the right-hand side of 
equation (3.6). This equation implies that the new state g has to be made by the action 
of V which affects at least one site of the original state g'. Then it is easy to see that u ~ , ~ ,  
is not symmetric, for example, u(11),(1111) = -A while u i l l l l ) , ( l l )  = 0. The third term 
comes from the effect of V which connects two graphs gl and g2 and makes the 
connected graph g. Then, for example, u[%olj , ( l l j ( l l l  = -A. The fourth term is the effect 
of the exclusion of the graph (11) from the graph g when the graph (11) is annihilated. 
Then the coefficient II, is the number of overlaps between graphs (11) and g. For 
example, n ( l lo l l )  = 6. The fifth term is the correction to the fourth term when the two 
graphs gl and gz are close enough so that they can be connected by the action of V. 
Therefore ng,glgz  is non-zero only when the graph g is decomposed into two graphs gl 
and g2 and also they could be connected by the action of V. In particular, 
n(1111),(11)(11) = 1 while n( l lo l l ) , ( l l j ( l l )  = 0 because in the latter case two graphs (11) are 
not close enough. The last term arises when the action of V on gl makes the graph g; 
whose size is smaller than the original graph gl. After the action of V on gl,  some 
configurations of g ;  and other graphs, say g2, do not occur when the graph g2 is very 
close to g \  so that g2 overlaps with the old graph gl. A subtraction term is needed 
because of this effect, and eventually two graphs g ;  and gz are regarded as one 
connected graph g because spatial relations between the two graphs are specified. 

The coefficient n(g;g;g2;gl)  is non-zero and one only when the graph g is 
decomposed into the graphs g; and gz and the graph gl overlaps with the graph gz. An 
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example for the non-vanishing of this coefficient is g, = ( l l l l ) ,  g ;  = (ll),  g2 = (11) and 
g = (11011). In this example, V acts on two adjacent sites on the right (left) side of the 
graph gl = (1 11 1) and makes graph g ;  = (1 1). The graph g 2  = (1 1) sits right (left) next 
to the graph 8’1 = (11) but with one site in between, and g2 and g ;  are regarded as the 
connected graph go = (1 101 1). The graph g2 overlaps with the graph g. 

In table 1, all the terms in equation (5.4) which are required to calculate the ground 
state energy up to eighth order in the perturbation theory are listed. Graphs whose 
lengths are larger than five do not contribute to the calculation and are omitted in the 
table. In general, graphs whose number of sites is less than N + 1  are needed to 
calculate the ground state energy up to 2Nth order. 

Now that we have understood every rule in the nonlinear Schrodinger equation 
(5.4), the wavefunctions Gg and the ground state energy can be obtained in the power of 
A .  If we write +hg as 

(5 .6 )  $, ,=A$f’+h 2 $ g  (2) + . . . ,  

the wavefunction $f’ is obtained using equation (5.4) from the lower-order wavefunc- 
tions $$I, $$? , . . and $$F1) because on the right-hand side v’s are ( - A )  or zero and E O  

starts from the second order in A.  
From equation (2.20) the ground state energy per site is given by 

If we write eo as 

E 0 = A E g’ + A E i2’ + . . . , ( 5 . 8 )  

( 5 . 9 )  

The wavefunctions needed to calculate up to the eighth-order ground state energy 
are given in table 2 together with the ground state energy. The ground state energy has 
only even powers of A ,  and the values coincide with the exact results of Pfeuty. 

Table 2. The ground state energy per site in powers of A and wavefunctions for the Ising 
model calculated from the nonlinear Schrodinger equation (5.4). Here E : )  is the nth-order 
contribution to the ground state energy and $:’ is the nth-order contribution to the 
wavefunction of the type g. 



Ground states and linked cluster expansions 1305 

Acknowledgments 

We have had useful discussions with Steven Shenker, Robert Pearson and Leo 
Marland. Marland very helpfully reported to us the parallel and independent work 
being conducted by himself and B Nickel. Pearson pointed out an error in our early 
calculations and gave us Potts model data for checking our algorithm. 

References 

Fradkin E and Susskind L 1978 Phys. Rez;. D 17 2637 
Hamer C J, Kogut J B and Susskind L 1979 Phys. Reu. D 19 3091 
Kogut J B and Susskind L 1975 Phys. Rev. D 11 395 
Pfeuty P 1970 Ann.  Phys., N Y  57 79 


